Features of PHITS3.27

PHITS development team, Mar. 2022

717 11

Number of PHITS users since 2019

Top 10 countries

Country	#users
Japan	1709
Indonesia	179
United States	162
Argentina	89
Myanmar	87
South Korea	84
France	73
Philippines	60
China	57
Germany/Italy	44

https://phits.jaea.go.jp/usermap/PHITS_map_userbase.html

Map of Models Recommended to Use in PHITS

	Neutron	Proton, Pion (other hadrons)	Nucleus Muon e ⁻ / e ⁺		e- / e+	Photon		
_	1 TeV	1 TeV/u					1 TeV	
← Energy → High	Intra-nuclea + Ev 3.0 GeV	ar cascade (JAM) aporation (GEM)		JAMQMD + GEM	Virtual Photo- Nuclear	EGS5	EPDL97 or EGS5	Photo- Nuclear JAM/ JQMD + GEM + JENDL + NBF
	Intra-nuclear o Eva 200 MeV	ascade (INCL4.6) + aporation (GEM)	d t ³ He	Quantum Molecular Dynamics (JQMD) + GEM 10 MeV/u	JAM/ JQMD + GEM 200 MeV			
	20 MeV Nuclear	JENDL-4.0/He 1 MeV	α		ATIMA +			
Low	(JENDL-4.0)	1 keV or track structure (KURBUC)			Original	1 keV	1 keV	
	+ EGM 0.01 meV					**Track structure 1 meV	*Only in v	water

JENDL-4.0/HE is recommended to use for shielding design of accelerators*

*Nuclear reaction models are still recommended to use for the other cases

Major Upgraded Features in ver. 3.27

Upgraded Points from ver. 3.24

- The generalized track structure mode has been upgraded and renamed as ITSART
- ✓ Functions to read nuclear data libraires for deuteron, alpha particle, and photon in ACE format have been implemented^{*1})
- A function to automatically determine the maximum library energy of each nucleus from address file (xsdir) has been implemented^{*2)}
- A conversion program from the cross sections contained in the EXFOR database to [frag data] has been developed^{*2})
- ✓ GUI of RT-PHITS has been developed
- The limitation of the number of particle types (part) specified in a tally was removed^{*2})
- A event generator mode using high-energy nuclear data library has been developed^{*2})
- ✓ Memory used in [t-yield] and [t-dchain] has been substantially reduced^{*2})

*1) Under support of ASTOM R&D and NAIS*2) Under support of RIST

Major Upgraded Features in ver. 3.27

Upgraded Points from ver. 3.24

- The RI source function has been improved to generate all kinds of radiation emitted from decay when proj = all is set^{*1}
- \checkmark The anatally function has become applicable to most tallies^{*1)}
- Treatment of thermal scattering libraries has been improved, with support for continuous energy thermal scattering libraries, mixed elastic thermal scattering libraries and libraries containing SANS models^{*2})
- ✓ The Low-Earth Orbit (LEO) mode has been added to the cosmic-ray source mode

*1) Under support of CCSE of JAEA

*2) Under the support of Dr. JI Marquez Damian at European Spallation Source

Generalized track structure mode ITSART

- ✓ Track structure mode for arbitrary ions and materials is implemented
- Every collision of protons/lons is calculated not only in water

How to use?

- ✓ In [Track structure], if mID of the cell is -1, ITSART is used.
- ✓ In [Track structure], even if mID of the cell is 1, ITSART is used outside the energy/particle range of ETS and KURBUC
- Chemical forms can be considered by specifying, for example, chem = H2O 1.0 N2 2.0 in [Material] section.

*T. Ogawa, Y.Hirata, Y.Matsuya, T.Kai, Scientific Reports, 24401 (2021)

Functions to read d, α & photo-nuclear libraries

- ✓ Data should be in ACE format (the same as neutron and proton libraries)
- ✓ Deuteron data library JENDL/DEU-2020* is contained in XS folder
- $\checkmark \alpha$ & photon-nuclear data libraries should be downloaded from elsewhere

*S. Nakayama et al., J. Nucl. Sci. Technol. 58(7), 805-821 (2021)

Automatic determination of [data max]

Comprehensive benchmark of

[parameters] setting

PHITS+JENDL-4.0/HE for shielding ✓ Proton library: dmax(1)>0HE neutron library: dmax(2) > 2010 [1/MeV/sr/proton] deuteron library: dmax(15) > 0 α -particle library: dmax(18) > 0 10⁻⁵ Photonuclear library: 10⁻⁶ dpnmax > 0 & ipnint = 1Neutron fluence 10^{-7} Yes 10^{-8} Automatically search the library with ENDL-4.0/HE extension specified by "lib" parameter in Default setting 10^{-9} xsdir for each nucleus 20 30 10 Yes No Neutron energy [MeV] Neutron fluence from p(52MeV) on C ✓ Conventional library (neutron) Use the Y. Iwamoto et al., J. Nucl. Sci. Technol., library ✓ Nuclear reaction model (others) DOI:10.1080/00223131.2021.1993372

High energy nuclear data library can be easily used in PHITS
 JENDL-4.0/HE is adopted in the recommendation setting for shielding etc.

Exfor data converter: Exfor2frag

What is Exfor2frag?

- Convert the experimental cross section data contained in the EXFOR database^{*} to [frag data] file
- Exactly reproduce the experimental data in the PHITS simulation

https://www-nds.iaea.org/exfor/

EXFOR file (left) for ${}^{16}O(p,x){}^{1}H$ is converted into [frag data] file (right)

✓ In [frag data] section, set a generated fragdata.dat file with opt=5

See phits/utility/exfor2frag in more detail

Extension from DICOM2PHITS to RT-PHITS

RadioTherapy package based on PHITS

Development of RT-PHITS GUI (β ver.)

RadioTherapy package based on PHITS

✓ User support function for RT-PHITS by a Python tkinter GUI
 ✓ It allows distribution analysis by interactive interface

See phits/utility/RT-phits/RTphitsGUI.pptx for more details

Upcoming Futures

We are planning to ...

Improve the track structure mode

- ✓ Extension of the precise mode applicable to other elements/compounds
- Improvement of ITSART to be capable of handling excitation
- Development of coupling modules connecting to material & life sciences
 Improve affinity to nuclear data library
 - ✓ Inclusion of JENDL-5.0 and photonuclear data libraries

Develop user support functions

- ✓ Special editor for making PHITS input file
- ✓ Improvement of RT-PHITS

Improve accuracy and nuclear reaction model

- ✓ Improvement of JQMD ver. 2.0 to be faster and more accurate
- Improvement in the evaluation methods for both statistical & systematic uncertainty
- ✓ Comprehensive V&V