Features of PHITS3.24

PHITS development team, Mar. 2021

Number of PHITS users since 2019

Top 10 countries

Country	#users			
Japan	1018			
Indonesia	112			
United States	88			
Myanmar	79			
Argentina	68			
South Korea	46			
France	43			
Malaysia	39			
Germany	32			
Italy	31			

2

Map of Models Recommended to Use in PHITS

	Neutron	Proton, Pion (other hadrons)		Nucleus	Muon	e- / e+	Photon	
_	1 TeV				_1 TeV			
High	Intra-nuclea + Ev 3.0 GeV	ar cascade (JAM) aporation (GEM)	JAMQMD + GEM		Virtual Photo- Nuclear			Photo-
Energy →	Intra-nuclear c Eva 20 MeV	ascade (INCL4.6) + aporation (GEM)	d t ³He	Quantum Molecular Dynamics (JQMD)	JAM/ JQMD + GEM 200 MeV	EGS5	EPDL97 or EGS5	Nuclear JAM/ JQMD + GEM +
w → E	Nuclear Data Library	Nuclear1 MeVData LibraryStopping por	α we	10 MeV/u er (ATIMA)	ATIMA + Original			JENDL + NRF
Lo		1 keV or track structure (KURBUC)				1 keV	1 keV	
	EGM				Muonic atom +	**Track structure	*Only in water	
	0.01 meV				Capture	1 meV		

Nothing has been changed since the previous version (PHITS 3.20)

Major Upgraded Features in ver. 3.22

Distributed since Oct. 2020

Upgraded Points from ver. 3.20

- ✓ [t-dchain] and DCHAIN-PHITS are improved in many aspects^{*1})
- A new function for calculating the response function of organic scintillator based on SCINFUL-QMD is developed^{*2)}
- A function to output cross sections and kerma factors used in PHITS is developed as a part of icntl=1
- An algorithm for adjoint Monte Carlo simulation is implemented for efficiently estimating the photon fluences^{*3)}
- A function to use the stopping power of liquid water, graphite, and dry air given in ICRU90 is developed^{*4)}
- ✓ A new option is introduced in the phase-space source based on accelerator emittance (s-type=11)^{*5)}
- An option to select share/non-share of tally variables for OpenMP shared-memory parallel computing is implemented

Under support of *1) CCSE of JAEA, *2) Dr. D. Satoh of JAEA, *3) Dr. A. Malins of JAEA, *4) Dr. M. Shimizu of AIST and Dr. Y. Namito of KEK, and *5) CCSE of JAEA

Improvements to DCHAIN-PHITS

- \checkmark All statistical uncertainties now propagated to results
- ✓ Hybrid activation cross section libraries now available →Various combinations of JENDL/AD, JENDL, ENDF, JEFF & FENDL/A
- New γ dose coefficients from ICRP 116 and ICRP 74
- Output plots show beam power and can track nuclides
- Support added for mesh=tet tetrahedral geometries

-10

-10

20

10

z [cm]

30

For mesh=xyz, [Source] from *.pht output now usable as a multi-source in PHITS, *.pht files can be split by time step, and new automatic 2D activity plots can be written

 ⁰
 ⁰

H.N. Ratliff et al., Nucl. Instrum. Methods Phys. Res. B, 484, 29-41 (2020)

10

PHITS simulation \rightarrow DCHAIN activity distribution \rightarrow PHITS decay y flux

z [cm]

5

15

20

Activity [Bq/cm³]

 10^{4}

20

30

10

z [cm]

106

10³

-20

Implementation of SCINFUL-QMD Algorithm

 Activate (n,C) cross section database in SCINFUL-QMD by setting iscinful=1 in [parameters]

α-production cross sections of ¹²C bombarded by neutrons

Ref.) T. S. Subramanian et al., Phys. Rev. C, 28, 521 (1983).

Light-outputs from an organic scintillator can be estimated

Response function of a liquid organic scintillator for neutrons

Ref.) S. Meigo, Nucl. Instr. Meth. A, 401, 365 (1997).

Neutron responses and detection efficiencies of an organic scintillator can be reproduced well on this mode

Major Upgraded Features in ver. 3.24

PHITS 3.24 was released in Mar. 2021

Upgraded Points from ver. 3.22

- ✓ RT-PHITS is developed by extending the function of DICOM2PHITS^{*1})
- A new calculation method for DPA is introduced
- ✓ PHITS Interactive Geometry viewer in 3D (PHIG-3D) is developed^{*2})
- Cosmic-ray source mode has been implemented
- User-defined anatally function is developed
- ✓ The concept of "history-counter" has been introduced^{*3})
- ✓ JENDL/DEU-2020 [frag data] File has been implemented^{*4})
- Functions for independently controlling source generations and summarizing tally results of each batch are implemented
- ✓ A function to output the line number subroutine & file names where error or warning message is written in the source program is implemented^{*5})

Under support of *1) Dr. Y.Koba, Dr. S.Yonai, Dr. S.Matsumoto, Dr. W.Chang of QST and Dr. T.Watabe and Mr. H.Sasaki of Osaka University, *2) Dr. S.Ohnishi of NMRI, *3) Dr. N.Furutachi of RIST, *4) Dr. S.Nakayama of JAEA, and *5) Mr. T.Imaki of JAEA

Extension from DICOM2PHITS to RT-PHITS

RadioTherapy package based on PHITS

New calculation method for DPA

DPA: Average number of displaced atoms per atom of a material
 Index of radiation damage

PHITS can calculate new index (*arc-DPA) with defect production efficiency

Development of PHIG-3D

What is PHIG-3D?

✓ PHIG-3D represent PHITS Interactive Geometry viewer in 3D

✓GUI software for visualizing geometry in 3D by reading PHITS input file

✓ Interactively enlarge, reduce, and rotate geometry by mouse operation

- ✓ Lattice or tetrahedral geometry with large meshes may not be drawn due to lack of memory
- ✓ PHIG-3D works only in 64-bit computers

Cosmic-ray source mode

Features of cosmic-ray source mode in PHITS

- ✓ Precisely reproducing energy and angular differential fluxes of galactic cosmic-rays in space and in the atmosphere using the PARMA model*
- Simple input parameters such as altitude, latitude, longitude, & date of interest
- ✓ Applicable to large solar particle events using the Band function**

Example of [source]

e-type = 26 $\$ cosmic-ray source icenv = 1 $\$ terrestrial GCR mode alti=1.0 $\$ altitude in km glat = 35.0 $\$ latitude in degree glong = 142.0 $\$ longitude in degree icyear = 2020 $\$ year icmonth = 1 $\$ month icday = 5 $\$ day

*T.Sato PLOS ONE 11: e0160390 (2016) **A.J.Tylka, 31st ICRC (2009)

User-defined anatally function

What is user-defined anatally?

- User-defined program for analyzing multiple tally results at once and generating a new tally result
- ✓ Sample programs for calculating dose-mean LET, and equi-effective doses based on the SMK model* are included in the PHITS package

*T.Sato & Y.Furusawa, Radiat. Res. 178, 341-356 (2012)

See phits/utility/usranatal in more detail

History-counter function

What is history-counter?

- \checkmark The maximum counter value of all particles generated in one history
- ✓ By defining a constraint using history-counter, you can tally your interested events selectively by tracing back to the generation of their sources.

JENDL/DEU-2020 [frag data] File

- ✓ Implementation of [frag data] of JENDL Deuteron Reaction Data File 2020*
- ✓ Accelerator-based neutron sources using 6,7 Li, 9 Be, 12,13 C(*d*,*xn*) reactions

*S. Nakayama et al., J. Nucl. Sci. Technol., DOI:10.1080/00223131.2020.1870010

Neutron energy spectra on ⁹Be(left) and C(right) thick target

In [frag data] section, set opt=5 and specify each target file in phits/XS/fragdata/

See phits/recommendation/NeutronSource in more detail

Upcoming Futures

We are planning to ...

Improve affinity to nuclear data library

- ✓ Full set of JENDL-4.0/HE
- $\checkmark\,$ Adoption to nuclear data libraries for d, t, ³He, α, γ

Implement new functions

- ✓ Extension of track-structure mode to various ions & material
- ✓ Estimation of systematic uncertainties

Develop user support functions

- ✓ Special editor for making PHITS input file
- ✓ DICOM viewer for RT-PHITS

Improve accuracy and nuclear reaction model

- ✓ Improvement of Fission & intra-nuclear cascade models
- ✓ Benchmark using shielding database SINBAD