Features of PHITS2.88

PHITS development team, Sep. 2016

Map of Models used in PHITS2.82

	Neutron	Proton, Pion (other hadrons)		Nucleus	Muon	e- / e+	Photon	
	1 TeV	1 TeV/n				_1 TeV		
	Intra-nuclea	ar cascade (JAM)		Quantum	Virtual	EGS5	EGS5	Photo-
High		+ Evaporation GEM)		Molecular	Photo- Nuclear	or	or	Nuclear JAM/
1	Intra-nuclear c	ascade (INCL4.6)	d	Dynamics (JQMD)	JAM/ JQMD	Atomic	Atomic	QMD +
λ	_	+	t	+	+	Data	Data	GEM
Energy	Eva	aporation (GEM)	³ He	Evaporation	GEM	Library	Library	+ JENDL
Ш	20 MeV		The	(GEM)	200 MeV	(EEDL / ITS3.0 /	JENDL-4.0	
	Nuclear		α	10 MeV/n		EPDL97)	/ EPDL97 (~100GeV)	NRF
→ _	Data Library			Ionization		(~10GeV)	,	2 MeV
Low	(JENDL-4.0)	1 keV	S	SPAR or ATIMA		1 keV	1 keV	
	10 ⁻⁵ eV → Event generator mode: all secondary particles are specifie							

Maximum energy is extended up to 1 TeV/n by fixing bugs in high-energy nuclear reaction models

*Switching energies can be changed in input file of PHITS

Major Upgraded Features in v2.82

Upgrade Points from v2.88

- Implementation of function to read tetrahedral geometry
- Improvement of muon transport algorithm
- Implementation of nuclear resonance florescence model
- ✓ Extension of "sum tally"
- ✓ Implementation of function to read user defined cross section
- ✓ Revision of energy straggling calculation procedure
- Revision of statistical uncertainty calculation procedure using dump source
- ✓ Revision of bugs in EGS5 mode
- ✓ Implementation of point estimator tally [t-point]
- ✓ Implementation of R- θ -Z mesh in [t-track]
- ✓ Implementation of function to generate triangle prism source

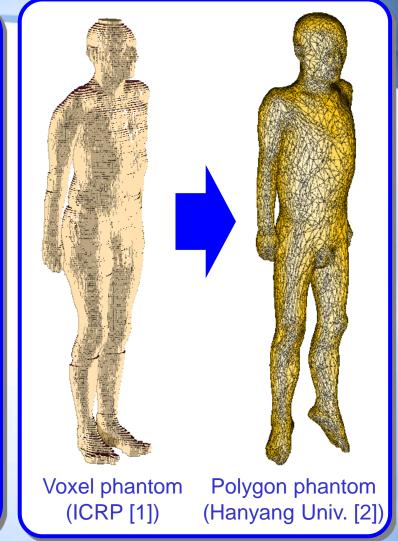
Tetrahedral Geometry

✓ What's tetrahedral geometry?

A kind of 3D polygon geometry < composed only by tetrahedrons

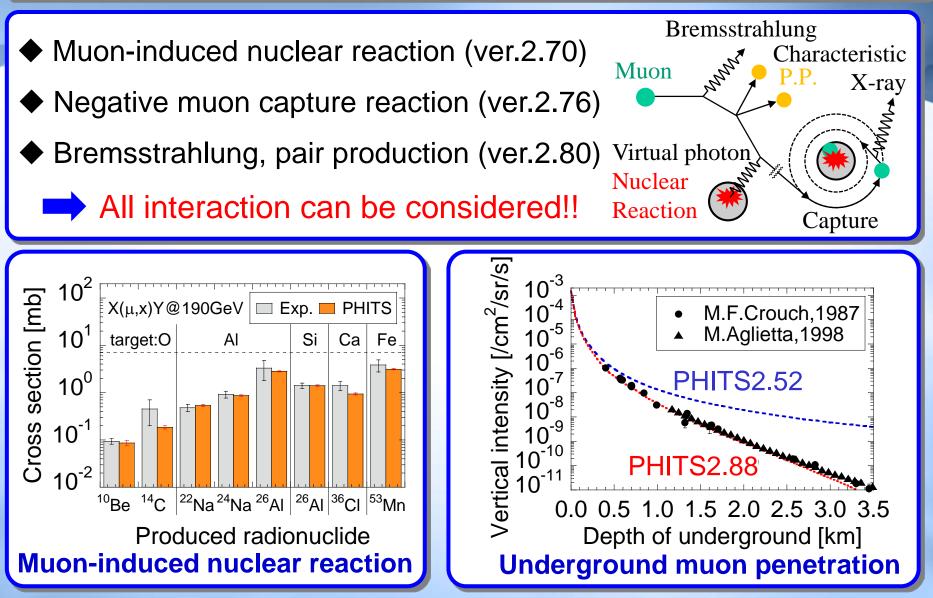
✓ What's the purpose of implementation?

Read complicated geometry such as human body


Read CAD geometry via tetrahedral geometry

✓ How to use? (see utility/TetraGeom)

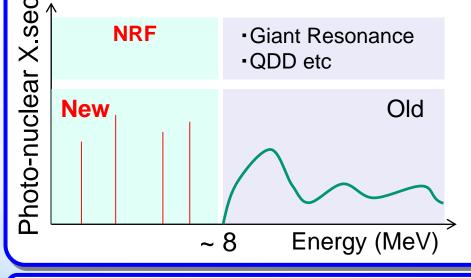
Similar to voxel geometry


You have to prepare tetrahedral geometry using other software such as TetGen*

* http://wias-berlin.de/software/tetgen/

[1] ICRP Publication 110, [2] Y.S. Yeom et al. Phys. Med. Biol. 59, 3173-3185 (2014) This implementation was performed under support of Prof. C.H. Kim's group of Hanyang Univ

Improvement of Muon Interaction Models



S. Abe and T. Sato J Nucl Sci Technol. (2016) doi: 10.1080/00223131.2016.1210043

Nuclear Resonance Florescence (NRF)

What's NRF?

Nucleus can absorb photon with energy equivalent to its excite level, and emit gamma-ray with certain energies (a kind of photo-nuclear reaction)

Application

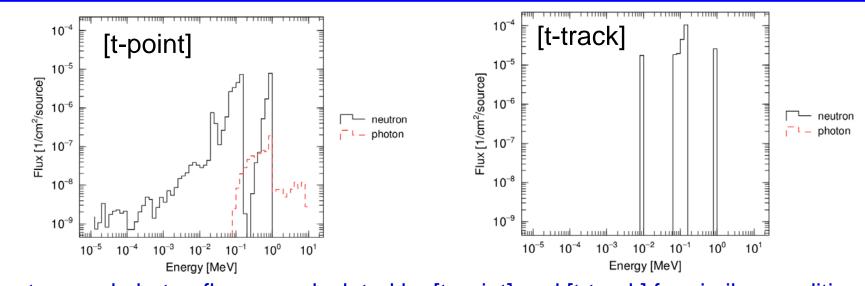
- Estimation of radioactivity after food irradiation
- ✓ Detection of nuclear material

How to use

- 1. Set ipnint = 2 in [parameters] section
- 2. Set polarization direction in [source] section (for polarized photon)
- 3. Set igamma = 3 if you would like to calculate isomer production

Absorption levels are mostly taken from ENSDF (<u>http://www.nndc.bnl.gov/nudat2/</u>)

T. Ogawa et al. J. Nucl. Sci. Technol. 53, 1766-1773 (2016)


Point Tally [t-point]

What's point tally?

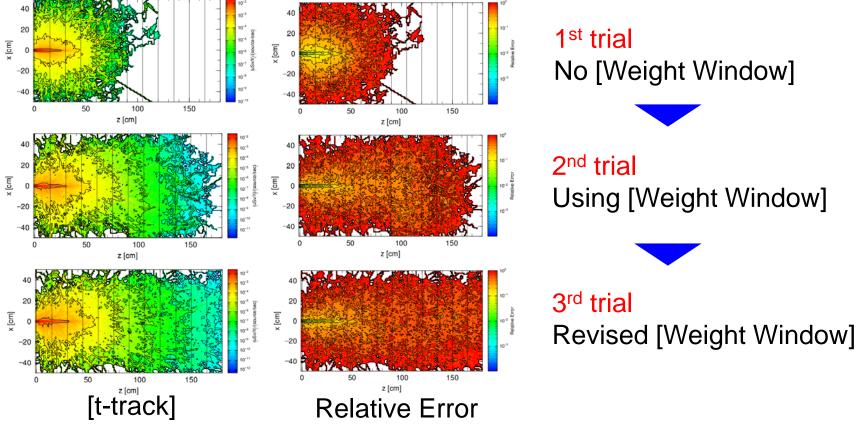
Estimate particle fluence at a certain point (or line) Effective when tally region is very small in comparison to whole geometry

Simulation Condition

- $\checkmark\,$ Simulation using only nuclear and atomic data libraries
- Only fluence of neutron and photon can be estimated
- ✓ Neither event-generator and EGS5 mode cannot be used

Neutron and photon fluence calculated by [t-point] and [t-track] for similar conditions

Major Upgraded Features in v2.88


Upgrade Points from v2.82

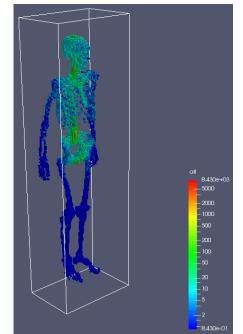
- Implement Weight Window Generator function
- Develop output option for a 3D-viewer ParaView
- Set ATIMA for default stopping power calculation model
- Improve "sum tally" function
- Improve muon and pion nuclear interaction models
- Implement radioisotope source function
- Develop JAMQMD
- Implement neutron decay process
- Revise some bugs in the EGS5 algorithm

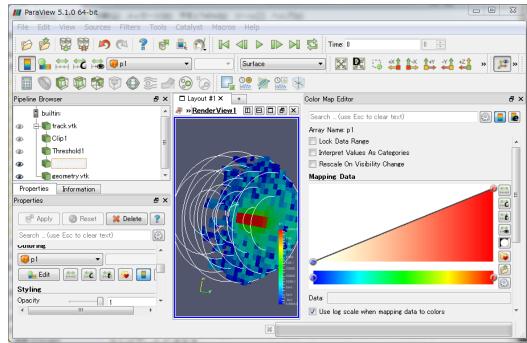
Weight Window Generator

What can do with Weight Window Generator [t-wwg]?

Automatically determine the effective settings of [weight window]
Help users to easily perform deep penetration calculation

Deep penetration calculation using [t-wwg] & [Weight Window] (history numbers are the same for all trial)


Output Function for ParaView

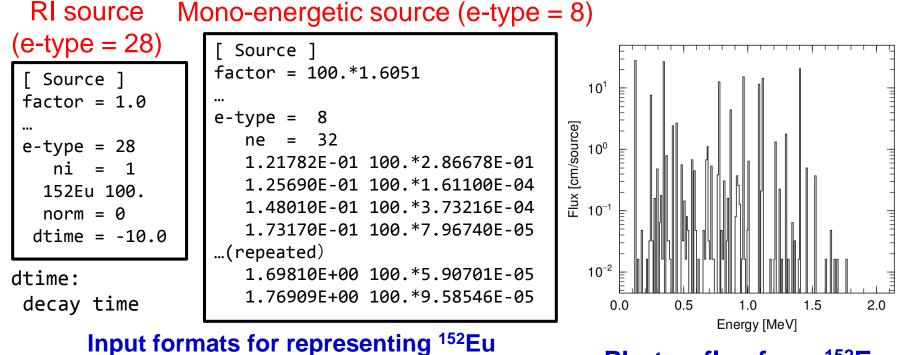

What's ParaView (http://www.paraview.org)?

- ✓ Open-source, multiplatform data analysis and visualization application
- Capable of drawing tally outputs in 3D picture & animation

How to activate the function?

Simply add "vtkout = 1" in a tally with "mesh = xyz"

Sample picture of ParaView


ICRP voxel phantom visualized by ParaView

See lecture¥advance¥paraview in more detail

RI Source Function

What can do with RI source function?

- generate photon sources with energy spectra of radioisotope (RI) decay by simply specifying the activity and name of the RIs
- ✓ consider activities from daughter nuclides by setting a decay time
- ✓ use nuclear decay database DECDC*

nput formats for representing ¹⁵²Eu with activity of 100 Bq

Photon flux from ¹⁵²Eu

*A. Endo et al., JAERI 1347 (2005); equivalent to ICRP Publication 107