Update log of PHITS

The latest version is PHITS 2.88.
Details of update features are also written in Manual "1.1 Recent Improvements" and Features of PHITS ver. 2.82 and ver. 2.88

[ phits282 ] 2015/12/25
Important improvements
  • Neutron decay can be considered. Mean life time of neutron is approximately 886.7 sec.
  • Bug in the treatment of the Doppler effect using the EGS5 mode was fixed. Bug in the high-energy photon transport (approximately above 10 MeV) using EGS5 mode was fixed. You do not have to set "deltm = large value" anymore.
  • Bug in the capture reaction of negative muon when 1H is included in the material was fixed.
  • The unit of esmin and esmax parameters is changed from MeV to MeV/u. These parameters define the minimum and maximum energy of charged particles treated in the simulation, respectively.
  • Algorithm of stopping power calculation ATIMA in PHITS was improved to reduce the computational time. Then, the default model for calculating stopping power was changed from SPAR to ATIMA.
  • High-energy heavy ion reaction model, JAMQMD, which works above 3 GeV/u, was improved to JAMQMD2, in the same manner as JQMD. The accuracy as well as the stability of the calculation are improved, particularly for cosmic-ray simulation.
  • The pion total reaction cross section model was improved, and employed as the default model.
  • A new model for deuteron-nucleus total reaction cross sections was introduced. This model can be used by setting icrdm=1 in [parameters] section. See this paper in more detail.
  • Muon nuclear reaction model was improved. See this paper in more detail.
  • A new section [Data Max] was introduced to specify the dmax parameter for each nucleus and material.
  • A new parameter natural was introduced. When you define an element without specifying its mass number in [material] section, and set natural = 1 or 2, PHITS assumes that it has natural isotope composition.
  • The RI-source function was implemented. Using this function, PHITS can generate photon sources with energy spectra of radioisotope (RI) decay by simply specifying the activity and name of the RIs. Nuclear decay database DECDC was used in this function. This database is equivalent to ICRP107.
  • The name of file to output the current batch information was changed from batch.now to batch.out. You can specify this file name by setting file(22) in [parameters] section.
  • A function to output the tally results in xyz-mesh in the input format of ParaView.
  • A new tally [t-wwg] was introduced. Using this tally, you can automatically determine an appropriate setting for the [Weight Window] section.
  • The arrows to indicate the xyz coordinates are depicted in [t-3dshow] tally.
  • Two options of the function about user defined cross sections were developed. One is an extrapolation function to extrapolate given data for incident energies, emission angles, and emission energies. The other is effective in the case that there are no data of differential cross section. You can use nuclear reaction models to simulate nuclear reaction events only with data of total reaction cross section.

[ phits282 ] 2015/12/25
Important improvements
  • The following improvements related to EGS5 mode were implemented, and some bugs of the mode were revised.
    1. A new parameter ipegs was introduced to control PEGS5 execution before PHITS simulation.
    2. A new parameter imsegs was introduced to precisely simulate the multiple scattering of electron every time when electron goes into a new material.
    3. The limitation of the number of material when you use EGS5 was eliminated. However, PHITS calculation may crash due to insufficient memory when you define more than a few hundred materials. In addition, the maximum number of elements per one material is still limited to 20.
    4. Mass data from carbon to aluminum (6 =< Z =< 13) were revised.
  • Algorithm to consider energy straggling of charged particles was revised to reproduce the doses around Bragg peak more precisely.
  • A new parameter idelt was introduced to reduce the computational time for particle transport simulation in very large gas area. When idelt=1, deltm and deltc are divided by the density of each material.
  • Muon-nuclear interaction model was implemented. Characteristic X-ray production from muonic atoms as well as associating muon capture reaction can be also considered.
  • The function for simulating nuclear resonance florescence (NRF) was implemented. In this function, the polarization of photon can be also considered.
  • A new parameter pnimul was introduced to bias the photo-nuclear reaction cross section against photo-atomic interaction cross section.
  • A new parameter NONU was added in [parameters] section to control the neutron multiplicity.
  • We changed the default setting of the nuclear reaction model in the case that light ions are targets. When such a reaction occurs, PHITS calculates it with regarding the light ions as projectile on the basis of the inverse kinematics. For example, in the default setting, INCL is used even for heavy ion induced reactions when deuteron is set to be its target nucleus.
  • Some bugs in the muon- and photon-induced nuclear reaction models as well as JQMD-2.0 were fixed.
  • Three new functions were implemented in [source] section.
    1. Generation of neutron sources from spontaneous fission by ispfs parameter.
    2. Generation of source particles from a triangle prism.
    3. Generation of source particles with arbitrary time information.
  • The function to properly calculate the uncertainty of tally results was implemented in the case of using dump source.
  • The function to read tetrahedral geometry (a kind of polygonal geometry) was implemented. This implementaion was carried out under support of HUREL, Hanyang University, Korea.
  • The function to read user defined cross sections was implemented.
  • A new option fiss was added in [counter] section to output the information on secondary particles generated through fission reaction, particularly in each generation of sequential fissions.
  • Point estimator tally [t-point] was implemented to calculate the particle fluence at a certain point or ring.
  • A new function to calculate the particle fluence in sector prisms was implemented in [t-track] tally by introducing θ mesh in the case of mesh = r-z.
  • Contribution of each particle can be properly calculated using [t-deposit] with output = deposit option.
  • A new parameter elastic was added in [t-yield] tally to output recoil nucleus from elastic scattering.
  • Restart calculation using [t-dpa] tally became feasible.
  • A new output option was added in [t-star] tally to output star density for a reaction which induces transmutation of target nucleus.
  • The maximum number of regions that can be specified in [t-dchain] was extended up to 500. We fixed a bug in [t-dchain] to properly consider the successive lines.
  • Sum tally function became applicable to all tallies except for [t-dchain].
  • We fixed a bug in [t-heat] with mesh=r-z.
  • We fixed a bug in [t-deposit], mesh=reg, output=deposit when you use [delta-ray] section.
  • Bug in the calculation of the uncertainty of [t-yield] was fixed.
  • We revised makefile to consider the dependence of each source file. Owning to this improvement, you can use "make -j" option to speed up the compilation of PHITS.
  • Instructions how to use tetrahedral geometry (TetraGEOM), point estimator tally (tpoint), and user-defined tally (usrtally) were added in the utility folder.

[ phits276 ] 2015/03/20
Important improvements
  • Transport algorithm for photons, electrons and positions in EGS5 (Electron Gamma Shower Version 5) was incorporated..
  • Muon-nuclear interaction model based on the virtual photon production theory was implemented. Characteristic X-ray production from muonic atoms as well as associating muon capture reaction can be also considered in the new version.
  • Adjustment parameters for determing the magnitude of angular straggling for nspred = 2 were introduced.
  • Version of DCHAIN-SP included in the PHITS package was changed from DCHAIN-SP2001 to DCHAIN-SP2014.
  • A new function to combine two (or more) tally results, named “sum tally”, was implemented. At this moment, this function works only for the results obtained from [t-track] and [t-deposit]. (From ver. 2.82, this function became applicable to all tallies except for [t-dchain].)
  • The Kurotama model was revised to be capable of calculating the cross sections over 5 GeV/n.
  • The gamma de-excitation data contained in trxcrd.dat was incorporated in the source files of PHITS. Consequently, file(14) parameter is not necessary to be specified in PHITS input file even setting e-mode?1 or igamma?1.
  • High-energy photo-nuclear reaction can be treated up to 100 GeV by implementing pion-production and non-resonant photonuclear reaction mechanism in JQMD and JAM.
  • The event generator mode ver.2 was improved to precisely determine the charged particle spectra on the basis of their cross section data such as (n, p) and (n, α) contained in evaluated nuclear data library.
  • JQMD was improved to consider the relativistic effect. The algorithm for stabilizing the initial state of nucleus was also implemented.
  • Detector resolution can be considered in the event-by-event deposition energy calculation using [t-deposit] with output = deposit.
  • A geometry check function was implemented. This function works when you specify a tally for generating the two-dimensional view of your geometry. When double defined or undefined regions are detected, their regions are painted on the two-dimensional view.
  • New parameter infout was added to control output information in file(6) (D=phits.out).
  • Cone shape can be used for specifying the source locations by setting s-type=18, 19.
  • Dumpall and dump function for [t-cross], [t-time], [t-product] tallies can be used in the restart calculation.
  • We increased the total memory usage of PHITS (mdas) given in the param.inc file, and the maximum number of lattice (latmax) in a cell.
  • Algorithm for including discrete spectra calculated by DWBA (Distorted Wave Born Approximation) was implemented. In several nuclear reactions induced by protons or deuterons, discrete peaks are added to neutron and proton spectra obtained by nuclear reaction models.
  • Results in the unit of Gy can be also obtained in [t-heat] tally. We corrected a bug that NaN was detected
    in the case of void regions.
  • OpenMP version of executable file for Windows was compiled in 64-bit compatible mode in order to increase the allocatable memory size. Consequently, only single version of PHITS can be executed on Windows 32-bit machine.

[ phits264 ] 2013/11/20
Minor revisions and bug fix
  1. Bug in the connecting calculation between DCHAIN-SP and PHITS2.63 was fixed
  2. Bugs in photo-nuclear reaction model and EBITEM were fixed
[ phits263 ] 2013/10/28
Important improvements
  • Algorithm for de-excitation of nucleus after the evaporation process was improved by implementing EBITEM (ENSDF-Based Isomeric Transition and isomEr production Model). Prompt gamma spectrum can be precisely estimated, including discrete peaks. The isomer production rates can be properly estimated.
  • Quasi-deuteron disintegration, which is the dominant photo-nuclear mechanism between 25 to 140 MeV, was implemented in JQMD. Thus, PHITS2.60 can treat the photo-nuclear reaction up to 140 MeV. The evaporation process after the giant resonance of 6Li, 12C, 14N, and 16O was improved by considering the isospin of excited nucleus. Thus the alpha emission is suppressed and neutron and proton emission is enhanced from the giant resonance of these nuclei.
  • Particle transport simulation in the combination field of electro-magnetic fields became available. See [Electro Magnetic Field] section in detail.
  • The kerma factors contained in JENDL-4.0 were revised for the following nuclides. (Only [t-heat] calculation with neutron Kerma approximation is influenced by this revision): As075 Ba130 Ba132 Ba134 Ba135 Ba136 Ba137 Ba140 Br079 Br081 Cd106 Cd108 Cd110 Cd111 Cd112 Cd113 Cd114 Cd116 Ce141 Ce142 Ce143 Ce144 Cf250 Fe059 Ga069 Ga071 Hf174 Hf176 Hf177 Hf178 Hf179 Hf180 Hf181 Hf182 I_127 I_129 I_130 I_131 I_135 In113 In115 Kr078 Kr080 Kr082 Kr083 Kr084 Kr085 La138 La139 La140 Mo092 Mo094 Mo095 Mo096 Mo097 Mo098 Mo099 Mo100 Nb094 Nb095 Ni059 Pr141 Pr143 Rb085 Rb086 Rb087 Rh103 Rh105 Ru096 Ru098 Ru099 Ru100 Ru101 Ru102 Ru103 Ru104 Ru105 Ru106 Sb121 Sb123 Sb124 Sb125 Sb126 Se074 Se076 Se077 Se078 Se079 Se080 Se082 Sr084 Sr086 Sr087 Sr088 Sr089 Sr090 Tc099 Te120 Te122 Te123 Te124 Te125 Te126 Te127m Te128 Te129m Te130 Te132 Xe124 Xe126 Xe128 Xe129 Xe130 Xe131 Xe132 Xe133 Xe134 Xe135 Y_089 Y_090 Y_091 Yb168 Yb170 Yb171 Yb172 Yb173 Yb174 Yb176 Zr093 Zr095
Minor revisions and bug fix
  1. Number of cells acceptable in [t-dchain] was increased
  2. Several algorithms were optimized to reduce the computational time, especially for xyz mesh tally with istdev = 2.
  3. The references of PHITS and INCL were changed
  4. 7-digit cell ID became acceptable
  5. Maximum dmax for electron and positron was changed from 1 GeV to 10 GeV
  6. Restart calculation became available even when PHITS did not stop properly
  7. Lattice cell became acceptable in [t-dchain]
  8. Avoid the termination of PHITS when some strange error occurs in JAM
  9. New multiplier function k=-120 was added to weight the density
  10. Minor bug fix in SMM, user defined tally, range calculation, transform, electron lost particle, random number generation for MPI, delta-ray production.
  11. Nuclear data for some nuclei was revised by following the revision of JENDL-4.0.
  12. Bug in reading proton data library was fixed.
[ phits252 ] 2013/03/05
Updates related to the PHITS package
  • Windows and Mac installers as well as instruction files for the installation and execution of PHITS are prepared.
  • Two executable files of PHITS for Windows and Mac, respectively, are included in "bin" folder; one is for single computing, and the other is for memory-shared parallel computing.
  • Shell script and batch file for executing PHITS were developed. They are included in "bin" folder. In Windows PC, user can execute PHITS from Windows Explore using "sendto" command.
  • Neutron nuclear data library based on JENDL-4.0 was revised. Photo- and Electro-atomic data libraries were developed. They are included in "XS" folder.
  • Materials for PHITS tutorial are included in "lecture" folder.
  • Sample input files for various situations are included in "recommendation" folder.
  • The PHITS manual was revised. It is included in "manual" folder.
  • Instructions for using tools related PHITS were prepared. They are included in "utility" folder.
  • A test version of PHITS in combination with EGS5 was developed. Its executable files are included in "bin" folder.
  • An activation calculation program DCHAIN-SP is included in "dchain-sp" folder.
Updates related to the PHITS source code
  • A function to generate knocked-out electrons so-called delta-rays was implemented.
  • The functions "dumpall" and "dump" for [t-cross], [t-time], and [t-product] tallies became available in the MPI parallel computing.
  • The radiation damage model for calculating DPA (Displacement Per Atom) was improved using the screened Coulomb scattering.
  • A new section named [multiplier] was developed for multiplying user-defined function with the results obtained from [t-track]. Using this function, user can directly calculate the ambient dose equivalent, H*(10), using PHITS.
  • The procedure for calculating statistical uncertainties was revised. The function to restart the PHITS calculation based the tally results obtained by past PHITS simulations was implemented in order to increase the history number when the number is not enough.
  • The shared memory parallel computing using OpenMP architecture became available. For this purpose, the source code of PHITS was dramatically revised, and old Fortran compilers such as f77 and g77 cannot be used for compiling PHITS anymore.
  • The cross section data for photo-nuclear reaction was revised based on JENDL Photonuclear Data File 2004 (JENDL/PD-2004).
  • The Statistical Multi-fragmentation Model (SMM) was implemented in the statistical decay of highly-excited residual nuclei.
  • Intra-Nuclear Cascade of Li`ege (INCL) was implemented, and employed as the default model for simulating nuclear reactions induced by neutrons, protons, pions, deuterons, tritons, He-3 and alpha particles at intermediate energies.
  • KUROTAMA model, which gives reaction cross sections of nucleon-nucleus and nucleus-nucleus, was implemented.
  • Intra-Nuclear Cascade with Emission of Light Fragment (INC-ELF) was implemented.
  • A user-defined tally named [t-userdefined] was introduced in order to deduce user specific quantities from the PHITS simulation.
  • Electron, positron and photon transport algorithms were revised. In the new version, effective stopping powers of electrons and positions vary with their cut-off energies. The energies are conserved in an event induced by photon-atomic interactions such as the photo-electric effect.
  • A new tally [t-dchain] was implemented to generate input files of DCHAIN-SP, which can calculate the time dependence of activation during and after irradiations.
  • Macro bodies of Right Elliptical Cylinder (REC), Truncated Right-angle Cone (TRC), Ellipsoid (ELL), and Wedge (WED) are implemented.
[ phits230 ] 2011/08/11
We have added mdp-uni90.f, unix90.f for gfortran and fortran90.
We have introduced the contribution of Coulomb scattering of charged particles and heavy ions in [t-dpa].
We have introduced [Multiplier] section.
In this section we can define any functions numerically
which is used in [t-track] tally multiplied with the track length.

[ phits228 ] 2011/06/21
We have improved the dump functions used in 'dumpall',
[t-cross], [t-time], and [t-product] in order to use them in the MPI parallel calculations.
We have added an information of the angle of the crossing surface in dumpall.
We have fixed many bugs in read00.f, update.f, ....,
which are not serious.
(Thanks to Furuta of RIKEN.)

We added the contributions of cut-off energy of electron and positron in [t-deposit], which are neglected before.
By this, the heats counted in [t-heat] and [t-deposit] became the same.
The number of PE for MPI calculation is increased from 200 to 20000.

We have fixed a bug in the input echo for [source].
(Thanks to Numba of Japan Radioisotope Association.)

[ phits226 ] 2011/05/18
We have implemented the [Delta Ray] section, which controls the delta ray production from charged particle in materials.

[ phits224L ] 2010/12/28
The nuclear data library for neutron based on JENNDL-4.0 (FSXKIB-J40) has been included in the PHITS package.

[ phits224 ] 2010/01/12
We have fixed a bug which causes a infinite loop when we use the nuclear data for proton induced reaction.
(Thanks to Kosako of Shimizu Corporation.)

[ phits223 ] 2010/01/04
We have revised the photonuclear reaction in the GDR region and the angular distribution of photon production by electrons.

[ phits218 ] 2009/10/07
We have re-written the program for the parts of GG geometry and the processing the nuclear data in an original way.
This does not affect the calculation results at all.
We have fixed a bug in the output of [t-star] with r-z mesh.
(Thanks to Yosuke Iwamot of JAEA)

[ phits217 ] 2009/09/03
We have introduced the process of photonuclear reactions in the GDR region.
This function is not complete, but in test stage.

[ phits216 ] 2009/06/02
We have fixed a bug in the e-mode calculation, which causes wrong deposit energy distribution.
However, the affects of it is not serious.
The related source files are ggm05.f, read00.f and talls01.f.
(Thanks to Tatsuhiko Sato and Yosuke Iwamot of JAEA)

[ phits215 ] 2009/03/02
We have extended the function of e-mode for thermal region of low energy neutron transport with/without S(a,b).
By the previous version, the neutron spectrum was not described correctly in thermal region by e-mode.
correctly in thermal region by e-mode.

We have fixed a bug in the counter function, which leads wrong number of the counter
when we specify the partilce 'part' for collision event 'coll'.
The particle specification for 'coll' means the incident particle, not the produced particles in the collision.
So all particles produced by a collision have the same counter value.
(Thanks to Matsuzaki of Hokkaido Univ.)

[ phits214 ] 2008/02/15
We have fixed a bug which stops the program in e-mode.
(Thanks to Marlies Luszik-Bhadra of Physikalisch-Technische Bundesanstalt.)

[ phits213 ] 2006/08/16
A bug came into the code when we fixed the problem;
ATIMA was stopped when the nucleus above Z=120 comes in, at phits210.
Please recalculate if you use the code after phits210 with ATIMA.
(Thanks to Iwase of GSI.)

[ phits212 ] 2006/04/21
Negative kf-code could not be read in the input file for particle specification.
This bug is fixed.
(Thanks to Watanabe of Kyusyu Univ.)

In the event generator mode, we introduced the branching ratio between the first excited state S(1)
and the ground state S(0) in the excitation function of 7Li for 10B(n,alpha)7Li reaction as S(1)/S(0)=14.9
according to the experimental data.
(Thanks to Arita of Renesas Technology Corp.)

We have fixed a bug by which nothing is scored in [t-track] with 'multiplier' and 'part=all'.

[ phits211 ] 2006/03/29
The LET values were wrong in the LET tally with ATIMA option.
This bug did not affect the transport calculation with the ATIMA option.
We have changed and put only 'main.f, range.f' for the new source.
(Thanks to Davide Mancusi of Chalmers Univ.)

[ phits210 ] 2006/03/27
We have changed the critical distance by which two different surfaces can be distinguished in GG of MCNP-based geometry
from the default value (1.e-04cm=1um) to 1.e-08cm in order to treat small regions.
(Thanks to Arita of Renesas Technology Corp.)

We have fixed the following problems;
1) ATIMA was stopped when the nucleus above Z=120 comes in.
2) GEM was stopped when unexpected nucleus comes in.
(Thanks to Inseok Baek of MSU.)

We have fixed some bugs in talls07.f.
(Thanks to Davide Mancusi of Chalmers Univ.)