

PHITS development team, Apr. 2023

Number of PHITS users since 2019

Top 10 countries

Country	#users			
Japan	2317			
Indonesia	302			
United States	224			
Philippines	179			
South Korea	157			
France	109			
Malaysia	102			
Argentina	98			
China	96			
Myanmar	90			

https://phits.jaea.go.jp/usermap/PHITS_map_userbase.html

Map of Models Recommended to Use in PHITS

	Neutron	Proton, Pion (other hadrons)	Nucleus		Muon	e- / e+	Photon	
_	1 TeV	1 TeV/u					_1 TeV	
– Energy → High	Intra-nuclea + Ev 3.0 GeV	ar cascade (JAM) aporation (GEM)		JAMQMD + GEM	Virtual Photo- Nuclear	r EGS5 or V **ETS	EGS5 or EPDL97	Photo- Nuclear JAM/ JQMD + GEM + JENDL
	Intra-nuclear c Eva	ascade (INCL4.6) + aporation (GEM)	d t ³He	Quantum Molecular Dynamics (JQMD)	JAM/ JQMD + GEM 200 MeV			
	20 MeV *JEI	NDL-4.0/HE	α	+ GEM 10 MeV/u	ΑΤΙΜΑ			
≁	Nuclear	1 MeV		Energy loss	+			NRF
Low	Data Library	1 keV ATIMA or **	KURBUC/ITSART		Original	1 keV	1 keV	
	+ (EGM) *Only for facility de **Only for microsco		esign opic simulation		Muonic atom +	**ETS		
	0.01 meV				Capture	1 meV	J	

There is no significant change since version 3.27

Major Upgraded Features in ver. 3.31

Since version 3.27

- ✓ Model for E-M de-excitation (EBITEM) has been improved
- ✓ A new function to use character variables has been implemented^{*1})
- ✓ A new parameter "samepage" has been introduced^{*1})
- ✓ A new microdosimetric function has been developed in the [t-sed] tally
- Instruction for defining user-own "interactions" and "particles" has been prepared and released via github
- ✓ ICRP voxel and mesh reference adult phantoms have been included^{*2})
- ✓ RI source function has become applicable to self-fission neutron sources^{*3)}
- ✓ Usage of most memory has been changed from static to dynamic allocation^{*3})
- ✓ A new option to output the cross sections contained in nuclear data library and stopping power has been implemented in "icntl=1" mode^{*3)}

*1) Under support of NAIS Inc.
*2) Under support of ICRP and Hanyang University
*3) Under support of RIST

Major Upgraded Features in ver. 3.31

Since version 3.27

- ITSART has been upgraded to be applicable to heavy ions and be feasible to treat excitations
- A new option of [t-cross] and [t-product] to output the results as a function of LET has been implemented^{*1})
- Anatally function becomes feasible to analyze the results from different tallies^{*1}
- ✓ [t-produce] becomes feasible to score secondary particles generated using nuclear data libraries^{*1})
- ✓ Several bugs in [t-point] have been fixed
- A new function to detect geometry errors in PHIG-3D has been implemented^{*2})

*1) Under support CCSE of JAEA*2) Under support of National Maritime Research Institute

E-M deexcitation model (ЕВІТЕМ) upgrade

6

User-defined character

onion.inp in lec03

```
[Material]
mat[1] Au 1
set:%Au%[1 -19.32]
mat[2] H 2 O 1
set:%H2O%[2 -1.0]
mat[3] Cu 1
set:%Cu%[3 -8.93]
mat[5] C 2 H 4
set:%C2H4%[5 -0.9]
mat[6] N 8 O 2
set:%Air%[6 -1.20e-3]
[Cell]
100 -1
          10
101 %Au% -11
102 %H2O%
             11 -12
103 %Cu%
            12 -13
104 %H2O% 13 -14
105 %C2H4% 14 -15
106 %Air% 15 -10
```

How to use

- Character variable can be set as set:%Variable_Name%[character]
- LARGE and small characters are distinguished (Case Sensitive!)

Important Notice

- PHIG-3D is not compatible with this function
- Input data after converting the character variables are generated in a rewrite-file named *_rwt.inp
- You can skip to generate *_rwt.inp by adding "\$RWT=0" before the 1st section for reducing the computational time (effective for larger input file)
- You can generate *_rwt.inp without performing particle transport simulation by adding "\$RWT=3"

 \rightarrow send *_rwt.inp to PHIG-3D

"samepage" parameter

Example: Depth-dependence of photon fluences in AI plate irradiated by 1 MeV photon

Direct comparison between the data for any "axis" parameter becomes feasible

Development of a new model in [t-sed]

Old Model

Track-structure code

- ✓ TRACEL (Tomita et al. 1996)
- ✓ δ-ray production (Butts & Katz 1967)

Output microdosimetric quantities

targets with diameter of 100 nm

(Sato et al. 2006, 2009)

New Model

Track-structure code

- ✓ ETS mode (Kai et al. 2015)
- ✓ ITSART (Ogawa et al. 2021)

Output microdosimetric quantities

 ϵ (eV), y (keV/um), z (Gy), <u>n</u>ion

Number of ionizations & electronic excitations \rightarrow Useful for DNA damage yield estimation

(Sato et al. submitted)

User Defined Model (PHITS-UDM)

✓ Users can implement their own "interactions" and "particles".
 ✓ Those extensions are easily shared with other users.

Example

- Photons are generated by the electron beam (Up to this point, calculations can be made with normal PHITS)
- 2. User-defined particles are produced by a user-defined interaction of photons with water
 - "kf-code" can be assigned to user-defined particles within the range: 900000 < |kf-code| < 999999
- 3. The user-defined particles decay according to a specified lifetime and branching ratio

https://github.com/sakaki-y/PHITS-UDM

Reference adult male and female phantoms in the PHITS input format are included in the PHITS package, based on the approval from ICRP

/phits/sample/icrp

Upcoming Futures

We are planning to ...

Improve the track structure mode

- ✓ Extension of the precise mode applicable to other elements/compounds
- ✓ Development of coupling modules connecting to material & life sciences

Improve affinity to nuclear data library

✓ Benchmark test of JENDL-5.0 and photonuclear data libraries

Develop user support functions

- ✓ Special editor for making PHITS input file
- ✓ Improvement of RT-PHITS

Improve accuracy and nuclear reaction model

- ✓ Improvement of JQMD ver. 2.0 to be faster and more accurate
- Improvement in the evaluation methods for both statistical & systematic uncertainty
- ✓ Comprehensive V&V