Features of PHITS3.10

PHITS development team, Mar. 2019

Map of Models Recommended to Use in PHITS

	Neutron	Proton, Pion (other hadrons)		Nucleus	leus Muon e ⁻ / e ⁺ Ph		Pho	oton
	1 TeV Intra-nuclea	ar cascade (JAM)			Virtual Photo- Nuclear			1 TeV
→ High	+ Ev 3.0 GeV	aporation (GEM)	+ GEM					Photo-
	Intra-nuclear c	ascade (INCL4.6)	d	Quantum Molecular	JAM/ JQMD +	5005	EPDL97	Nuclear JAM/ JQMD
nergy	Eva 20 MoV	aporation (GEM)	t ³He	Dynamics (JQMD)	GEM 200 MeV	EGS5	or EGS5	+ GEM
Ш ↓	Nuclear		α	+ GEM 10 MeV/u	ATIMA			JENDL +
MO-	Data Library (JENDL-4.0)	1 MeV 1 keV		Ionization ATIMA	+ Original	1 keV	1 keV	NRF
-	+ EGM				Muonic atom +	**Track structure	*Only in v	water
	0.01 meV				Capture	1 meV		

Neutrino with energy below 20 MeV can cause interaction with ¹H, ²H, and electron, though it is not written in this map

Major Upgraded Features in v3.08

PHITS 3.08 was distributed only through PHITS tutorial

Upgraded Points from v3.02

- ✓ JAMQMD2 is developed for high-energy nucleus-nucleus interaction
- Neutrino interaction model is developed & implemented
- ✓ [weight window] & [t-wwg] become applicable to xyz-mesh
- Emission of Auger electrons, internal conversion electrons, & characteristic X-rays can be considered in the RI source function
- \checkmark Several types of dose conversion coefficients are implemented
- ✓ Source generation function in tetrahedral mesh is developed
- ✓ Tetrahedral geometry created by CAD become readable in PHITS
- $\checkmark~$ Neutron and $\gamma\text{-ray}$ emissions are considered at once in GEM
- \checkmark Detector response can be calculated even when [forced collisions] is used
- Probability density of the number of interactions per history can be calculated using [t-interact] (former [t-star])
- Several activation cross section data libraries used for [t-yield] and [tdchain] are implemented
- ✓ [t-heat] is merged into [t-deposit]
- PHITS executable file in MPI version for Windows is implemented

Development of JAMQMD version 2

Nucleus-nucleus interaction model for 3 GeV/n ~ 1 TeV/n

Useful for cosmic-ray and high-energy physics simulations

200 ◆ Exp. (Cecchini et al. 1993) □JAMQMD Ver.1 +GEM 160 Cross section (mb) △JAMQMD Ver. 2 + GEM 10km μ, ν 120 Improved 80 40 0₈ 13 9 10 Atomic number of residual nuclei Cross section of 14.6AGeV ²⁸Si(²⁷Al,x) Airshower simulation

- ✓ Improve the accuracy of fragment yields
- ✓ Automatically used for nucleus-nucleus interaction above 3GeV/n

*T.Ogawa et al., Phys. Rev. C., 98, 024611 (2018)

Development of Neutrino Interaction Model

*Applicable to neutrino interaction with ¹H, ²H or e⁻

Neutrino can penetrate nuclear reactor

Energy distribution of secondary particles produced by ²H(v_e,X)

- Consider only when ntrnore is set to 1 (D=0) in [parameter]
- Recommend to use this option in combination with [Forced Collisions]
- Interaction with heavier target & neutrino oscillation are under consideration

*Some functions are available only after version 3.10

xyz-mesh for [weight window] & [t-wwg]

Statistical uncertainties of [t-track] obtained using [t-wwg] with reg (left) and xyz (right) meshes. Cells are divided only to the vertical direction.

(see lecture/advanced/weight in more detail)

You do not have to divide a cell into many pieces for defining different weight windows

Major Upgraded Features in v3.10

PHITS 3.10 is distributed since April 2019

Upgraded Points from v3.08

- Procedure for coupling PHITS with thermal analysis software such as ANSYS Fluent is established
- ✓ Sample files for using JENDL-4.0/HE are provided
- ✓ Function to read magnetic field maps written in xyz or r-z grid is developed
- ✓ [t-dchain] has become applicable to xyz-mesh
- $\checkmark\,$ Error and warning ID numbers are introduced for some messages
- $\checkmark\,$ Accuracy of electron track-structure mode is improved
- ✓ Detector resolution in any form given by user-defined function can be considered
- ✓ INC-ELF, an intra-nuclear cascade model developed in Kyushu Univ., is improved
- \checkmark A new gshow option is introduced to visualize tetrahedral and voxel geometries
- $\checkmark\,$ Time for reading lattice structure is reduced by introducing compressed format
- ✓ Function to calculate water-equivalent dose is implemented in [t-deposit]
- ✓ Remaining batch number has become adjustable using batch.out

Coupling with thermal analysis

- Create geometry in thermal analysis code such as ANSYS Fluent
- Meshing to tetrahedral mesh => Output in NASTRAN bulk data format \mathbf{I}
- ✓ Import => PHITS radiation transport => Output in OpenFOAM field data
- Import => Thermal analysis by ANSYS Fluent

Sample files for using JENDL-4.0/HE

What is JENDL-4.0/HE?

- ✓ High-energy nuclear data library for neutrons and protons up to 200 MeV
- ✓ Precisely reproduce the DDX of nuclear reactions particularly for lighter targets
- ✓ Data for neutrons below 20 MeV are the same as JENDL-4.0

Important notice!

- ✓ Data for only several elements are included in the PHITS package. Data for other elements will be released via JAEA website in future
- Event generator mode cannot be used in combination with JENDL-4.0/HE
- Calculation of deposition energies is not feasible using either [t-deposit] nor [t-heat]

Applications are limited to e.g. shielding calculation and neutron source design

Please see phits/recommendation/jendIHE

S. Kunieda et al., JAEA-Conf 2016-004 (2016), https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl40he.html

Function to Read Magnetic Field Map

- ✓ Both xyz and r-z grid fields can be read
- Both map- and list-type data can be read
- ✓ Applicable to symmetry and asymmetry fields to certain axes
- Particle motions are analyzed by Runge-Kutta method

Please see phits/utility/magmap in more detail Magnetic field data are provided by Dr. Sakata @ Osaka Univ.